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Magnetogasdynamic deflagration and detonation 
waves with ionization 

By J. B. HELLIWELL 
Department of Mathc,matics, The Royal College of Science and Technology, Glasgow 

(Received 7 December 1962) 

The propagation of a one-dimensional combustion wave into a non-ionized gas 
at rest in the presence of an electromagnetic field is considered when ionization 
of the gas occurs across either the combustion wave or a preceding shock wave. 
The electric and magnetic fields in the undisturbed gas ahead of the waves are 
mutually perpendicular and orthogonal to  the direction of wave propagation. 
It is shown that steady detonation occurs a t  a point which is analogous to the 
Chapman-Jouguet point of ordinary gasdynamic combustion theory. Numerical 
calculations are made of the state of the gas between and behind the waves in 
two particlar models, in both of which the upstream electric field is zero. The 
models are then equivalent to magnetogasdynamic phenomena in a perfectly 
conducting gas. First, the case of steady detonation is studied. Secondly, steady 
deflagration in a tube, closed at one end, is discussed. 

1. Introduction 
The commonly accepted description of a deflagration which has proved ade- 

quate for the investigation of steady-state phenomena in non-ionized gases is 
that  of a shock wave which propagates into a cold non-heat conducting, non- 
viscous gas thereby raising the temperature and pressure so that burning of the 
hot gas behind i t  is initiated. I n  actual fact the burning takes place over a thin 
section of the gas within which exothermal energy is released, but for theoretical 
purposes this is replaced by a discontinuity in the gas flow which is termed the 
combustion wave or flame front. I n  the case of steady detonation a t  the Chapman- 
Jouguet velocity the model is modified so that the shock wave and flame front 
coalesce into a single discontinuity For a complete description of the models 
see, for example, Courant & Friedrichs (1948). Now it is known that ionization 
of a gas may take place when its temperature attains a value of the order 
I O4 deg K. The shock wave in the above models may thus be sufficiently strong 
to ionize the gas, and if electric or magnetic fields are present the model gives 
rise to  a problem which involves magnetogasdynamic effects, in which inter- 
action occurs between the electromagnetic, calorific and mechanical energies 

In  this paper it will be supposed that the shock wave is sufficiently strong to 
fully ionize the gas so that ahead the electrical conductivity CT = 0, and behind 
r~ = co. I n  a previous paper Helliwell (1962) has determined some general pro- 
perties of gas-ionizing shock and combustion waves when the upstream electro- 
magnetic field is parallel to the wave fronts. I n  this paper more specific results 
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are given for two particular processes. First, it  is shown that a steady detonation 
wave with ionization across the front propagates under the Chapmandouguet 
condition that the velocity of the wave froiit relative to the burnt fluid particles 
is equal to the velocity of propagation of small disturbances in the products of 
combustion. Detailed analysis and calculation are then made for such waves in 
an initially non-conducting gas in the absence of an electric field. In  a sense 
these calculations extend the result of Gross, Chinitz & Rivlin (1960) who dis- 
cussed exothermal waves in a gas of infinite conductivity. The second physical 
process which is analysed is that of a steady deflagration in a tube closed at one 
end. For simplicity numerical calculations are again made only for the case when 
the upstream electric field is zero. In  such a gas the results are formally identical 
to those for the magnetogasdynamic deflagration which propagates into a gas 
which is already fully ionized. The corresponding phenomena in ordinary gas- 
dynamics has been examined by Adams & Pack (1959), am’ong others, and the 
present studies extend their work into the magnetogasdynamic regime. 

2. A model detonation 
We consider a one-dimensional model of a detonation wave which propagates 

with velocity V* into a non-conducting inviscid gas (cr = 0) at rest in which the 
pressure p = p$  and the density p = pg. It is supposed that in this gas there is 
established an electromagnetic field with, relative to absolute axes, an electric 
field component E = E$ and magnetic field component H = Hg both parallel 
to the wave front and such that i, E$, H$ are mutually orthogonal, where i is 
the unit normal vector directed from the wave front into the upstream gas. In 
what follows we refer to all properties ahead of the wave by the suffix 0, behind 
the wave by the suffix 3 and measurement in an absolute system of axes by an 
asterisk. Thus, if we suppose that the temperature rise across the detoiiatiori 
front is sufficient to ionize the gas fully, behind the wave the conductivity CT = c5, 

and the pressure, density, particle velocity, U, and electromagnetic field com- 
ponents arep;, &, Uz, EZ, and HZ. A t  the detonation front exothermal energy 
is released by the process of burning but some of this is absorbed by the process 
of ionization. It is supposed that the overall energy liberated at  the front is 
Q per unit mass. At higher temperatures, corresponding to higher values of Q ,  
further losses of exothermal energy are to be expected due to radiation. No 
explicit account is taken of such losses in the following analysis. 

Now take a set of right-handed orthogonal axes moving with the detonation 
front such that the x-axis is directed along i. Properties of the gas measured in 
this set of axes are denoted without asterisk. If we represent by j and k the unit 
vectors along the y- and z-axes, respectively, it follows that 
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where p is the permeability, supposed constant, and M.K.S. Giorgi units are used 
for the measure of electromagnetic quantities. As shown in figure 1, U,, U ,  are 
particle velocities and n is a unit vector, all directed normally from upstream to 
downstream of the front. The measures of pressure and density are unchanged. 

1' Y 

Thus 

- u2 I Eo 
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HO 

U = t o  u.= 0 

FIGURE 1. Model detonation. 

The jump relationships across the front are, in the absence of free magnetic 
poles, as follows: 

lH,1 = 0, 

[ml = "2 = 0, 

[mu + ( p  + 4pH2) n -pH,H] = 0, 

[m( tTJ2+p/p+b)+(E  x H),] = mQ, 
[n x El = 0,  

where 8 is the internal energy per unit mass of the gas due to translation, rota- 
tion and vibration of the molecules, and [XI = 5, - 1,. Furthermore, in region 2, 
if physically unsupportableinfinitelylargecurrents are not to arise, we must have, 

E, = -pU#&J-II,,k). from Ohm's law, 

From these equations it is now straightforward to show that 

E, = E, j, where E,  = E,. 

H, = H,k, where E,  = -plJ,H,. 

The fundamental relationships across the discontinuity may thus w e  written 

m = pZu, = po% ( l a )  

mTi,+p,+$,uHi = mtT,+p,+Q,uH& ( 1 b )  

(1 C) 

(14 

m( +pZ/pZ + €2) -E,H, = WL($UE +p,Jpo + €0) - E, H, + WLQ, 

E, = E, = -/[Ti H,. 

Introduce the specific volume r = l / p ,  and write 
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Then the jump relationships (1) become 

.In = U2/r2 = Ci,/r,,, 

ni( G2 - ti,) + ( p ;  -PA) = 0 ,  

( 3 a )  

( 3 b )  

;(U- Ci~)+(GH+p;,r2)-(~~+pA7,,)  = Q’, (3c )  

where mQ‘ = mQ - E t  H;. This is the excess of the energy per unit area liberated 
at  the detonation wave over the flux per unit area of the energy of the electro- 
magnetic field ahead of the wave. Now equations ( 3 )  are identical with thc 
standard jump relationships across a flame front in ordinary gasdynamics foi. 
a fictitious gas in which the pressure p’ and internal energy &’ are related by an 
equation of state of the form p’r - €‘ = pr  - € and exothermal energyis released 
of amount Q’ per unit mass. Provided that this equation of state &‘ = f ( p ‘ ,  r )  
for the fictitious gas is qualitatively similar to & = g ( p ,  r )  appropriate to the 
real gas, so that the derivatives and curvature have the same sign, then the 
results of ordinary gasdynamic detonation theory may be taken over into the 
present theory. It does not seem to be a simple matter to show that this is always 
so when a discontinuity of electrical conductivity occurs across the front and 
possibly an analysis of shock structure is required to resolve the question.? 
This analysis is not carried out here and we proceed on the assumption that the 
forms are qualitatively similar. The analysis of gasdynamic detonation waves is 
classical. Reference has already been made to Courant & Friedrichs (1948). 
For such waves to exist Q’ > 0. Thus gas-ionizing detonation waves will only 
exist if the exothermal energy liberated a t  the front is sufficiently large. The 
analogy may be taken further and used to derive additional properties. In 
particular a steady-state detonation is associated with the Chapman-Jouguet 
point on the combustion adiabatic where U, = C, is the velocity of propagation 
of small disturbances in the products of combustion. Since in this region v2 = 5 r ~  

it follows that d(H,r,) = 0. Hence dH2/dr2 = - H2/r2. Thus 

where A,, B, (= (,uH;r2)&} are the speed of sound and Alfvhn speed respectively 
behind the detonation front. 

Magn.etogasdynamic detonation 

In  their studies of the structure of a gas-ionizing shock wave Lyubimov & 
Kulikovsky (1960) and Zhilin (1960) have shown that an electromagnetic wave 
is propagated into the upstream gas and, in order that the discontinuity may be 
the limit of some continuous transition, arbitrary values of the electric and 
magnetic fields cannot be specified. However, they point out that a possible 
specification is that of zero electric and arbitrary transverse magnetic field 
ahead of the shock wave. Since the upstream gas is at  rest it  follows that, in this 
case, the electric field relative to the particles of gas is zero, which is the usual 
magnetogasdynamic condition that must hold in a perfectly conducting medium. 

t I am indebted to a referee for this remark. 
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Thus, in such a situation, the effect of ionization will be apparent only in a reduc- 
tion of the value of the energy release term, Q, due to the use of some of the 
exothermal energy to ionize the gas. Such detonation waves we then term 
magnetogasdynamic. Indeed, since EC = 0 we have 

If we put 7 = 1/p and eliminate E,, E,  between the equations (1) and (4) we obtain 
the appropriate jump relationships in the form 

Magnetogusdynumic detonution in a perfect gas 

As a final simplification of the model it is supposed that the gas on either side of 
the detonation front is perfect but that the adiabatic index, y ,  takes different 
constant values yo, y, in the upstream and downstream regions. Then the 
internal energy, 8, = p,r,/(y,- 1) for r = 0,3. In  the region upstream of the 
wave the speed is denoted by a ,  = (yop ,r0)~ .  The magnitudes of the particle, 
wave, sound and Alfvkn velocities are now written in terms of a, as unit of 
measure. Thus upstream of the front we introduce a dimensionless Alfvh speed, 
a, given by a2 = ,iiHiro/n,2. The additional non-dimensional speeds v*, c2, a2 are 
defined as follows: 

I/ 0 -  - 1’” = v*uo, c\ = Cl, = c2uo, A ,  = a2ao. ( 7 )  

Then the jump relationships (5)) which give the flow and electromagnetic para- 
meters behind the wave in terms of those ahead, become 

c21v* = T2/To ,  P a )  

Y0v*(C2- t2r* )  f (y07o/y272) $. $ ~ o ~ 2 { ( T o / T 2 ) 2 -  11 = 0,  ( 8 6 )  

( 8 c )  (c; - v*’) + 3ni/(y2 - 1) - 2/ (yo-  1) + ~ C L ~ ( ( T ~ / T ~ )  - 1} = 3Q/ai, 
c; = a$ + a2(r,/r2), 

together with 

HZ = H $ ( T ~ / T ~ ) .  Eg = v * ( T ~ / T ~ -  I) ,  

where HX is arbitrary and E;j: is zero. 
We note that, in the case when y2  = yo equations (8 u,, b, C ,  d )  with considerable 

changes of notation are essentially those discussed by Gross et al. (1960) as 
leading to the ‘singular solution at  the Chapman-Jouguet point’ of their 
paper. In  the present paper we give an independent and distinct analysis 
of these equations from which numerical details of the properties of steady 
magnetogasdynamic detonation waves are drawn for several values of &/a: and 
an associated wide range of values of a. These considerably amplify the results 
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of the earlier work. In  the following section we have occasion to refer to these 
numerical details for comparative purposes. 

From equations (8) we eliminate a2 and c2. Thus 

The elimination of v* then leads to the fourth-degree equation for the density 
ratio (T,,/T& as follows: 

where 
( 7 0 / 7 J 4  + h1(70/72)3 + h2(70/72I2 + h3(70/72) + h4 = 0, (10) 

h = - 4 ~ 2 / ( ~ 2 -  11, 

h2 = - 2[b2(YO + 1)MYo(7o - 1)) + 2Y2&/G + 3a2(74 - 7 2  - 1 ) / ( 7 2  - l)I/lP- YP)  a21, 

ha = 4 ( ~ 2 +  1) [ l / ( ~ o -  1)  +&/a: + a21/[(2-y2) a21, 

JL4 = - PY,(Y2 + 1) (1 + *Y0a2)1/[Yo(Y2 - 1) ( 2  - 7 2 )  a”. 

It remains to distinguish which of the four roots of this quartic is that relevant 
to the solution of the detonation problems. 

We recall that  1 < yo, y 2  < 2. Now for a physically realistic solution v* itself 
must be real, that is v * ~  2 0. Hence from equation (9a ) ,  since the right-hand 
side is always positive, 70/72 G ( y 2 +  1)/y2. Also from equation ( S b )  we deduce 
similarly that ro/r2 ,< {(y2 + l ) / ( y 2  - I))&. Therefore, since 

(Y2+ 11/72 < UY2+ 1 ) / ( Y 2 -  1))4 

it follows that across any steady magnetogasdynamic detonation wave the 
density ratio is restricted to the range 

0 70172 G ( ~ z +  11/72? ( 1 1 )  

which is independent of a2 and thus the same as in ordinary gasdynamic detona- 
tion theory. Let us now consider the roots of equation (10). First, we notice 
that for all (Q,  a)  the coefficients h, < 0, h, > 0, h4 < 0. Therefore there is always 
at least one negative root and an odd number of positive roots. From a con- 
sideration of the form of the curves (9 a, b)  in the ( v * ~ ,  T0/r2)-plane it is apparent 
that  the positive root which always exists lies in the unrealistic range 

Further, in the range 
7o/72  > ( ( 7 2  + 1)/(Y2 - I))&. 

0 G 70/72 6 ( 7 2  + 11 /72  < ( ( 7 2  + 1 ) / ( 7 2  - 1))4 
the curve ( S a )  is concave upwards with positive slope a t  ro/r2 = 0 and asymptotic 
t o  ro/r2 = ( y 2  + I)/y2. Similarly in the range 

0 G 7 0 / 7 2  6 { ( 7 2 +  1NY2-  1))t 

the curve (9  b)  is also concave upwards, has zero slope a t  ro/r2 = 0 and is asymptotic 
to ro/r2 = { (y2  + I)/(y2 - 1))*. Rut in the case of ordinary gasdynamic flame theory 
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it  is known from exact analysis that a t  the Chapman-Jouguet condition two 
velocities of propagation occur, namely those corresponding to steady detona- 
tion and deflagration, respectively. Thus when a2 = 0 the two curves always 
intersect in the range 0 < To/T2  < (y2 + l)/y2. However, the rate of increase with 
a2 of the slope of the curve (9 b )  is greater than the corresponding rate of increase 
of the slope of curve ( 9 a )  in this range. Therefore, for a2 3 0, two intersections 
always occur in this range, and since the steady detonation velocity is, by 
definition, very much greater than the associated steady deflagration velocity 
it follows that (70/72)detonation > (70/~2)dcBagration. Hence the quartic equation 
(10) has four real roots and the middle positive root is that reIevant to a steady 
detonation. 

The complete solution to a detonation problem is thus obtained by finding the 
second largest positive root of equation (10) for ro/r2, determining v* from either 
of equations ( 9 a , b ) ,  then c2 from equation (8a ) ,  a2 from equation ( 8 4  and 
EZ together with H f / H $  from equation (8e) .  Finally the pressure ratio p2/po  
follows from p2/po  = ai(To/T2) and the temperature ratio is given by 

where cvo, cV2 are the specific heats at  constant volume on the two sides of the 
wave front. 

For simplicity in the numerical calculations it is assumed that the ratios of 
the specific heats of the unburnt gas and products of combustion are the same. 
The value used is yo = y 2  = $ appropriate to a monatomic gas. A range of values 
of the two parameters (a2, &/a,;) are taken as follows: 

a2 0 10 50 100 500 1000 

&/a; 50 - 200 - 500 - 

These values of a2 correspond to a range of magnetic field strength of the order 
0 < fl$ < 10,000 G in a gas a t  atmospheric pressure ( p o  = 1 atm) and higher 
values at higher pressures. With a magnetic field strength of the order of 10,000 G1- 
it is possible that the effects of Hall currents may be significant. In  order not to 
confuse the model unduly any such effects have been neglected in this paper. 
At the lower end of the scale for &/a; the value &/a; = 50 is that for a conventional 
explosive releasing about 1700 cal/g in a gas at atmospheric pressure and density 
of 1 g/l. At the upper end of the scale &/a; = 500 is a value corresponding to 
thermonuclear fusion in a more diffuse gas. It will thus be noted that the 
liumerical details of the computed models cover an extensive range of physical 
situations and it should be remarked that certain aspects of these may not be 
particularly realistic. For instance, in the case of a conventional explosive, 
dissociation effects may limit the temperature and full ionization behind the 
front is not likely to occur. Further, except a t  low degrees of ionization the 
absorption of ionization energy from the exothermal energy is not necessarily 
negligible. However, the neglect of this absorption, and the supposition that 
g = a3 behind the front, leads to a tractable mathematical analysis and calcula- 
tions based upon a value of y = $ appropriate to a fully ionized monatomic gas 
even if not of quantitative interest should give qualitative information to form 
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a basis for more realistic computations in later work. In actual fact the numerical 
results are not markedly dependent upon the actual choice of the value for y. 
The results of the calculations are given in figures 2 and 3. In  figure 2 are shown 
contours at  constant &lag of detonation speed and the speed of propagation of 
small disturbances in the burnt gas, both in terms of the speed of sound in the 
unburnt gas as unit of measure. In figure 3 are displayed similar contours of 
the pressure and density ratios together with the magnetic and electric field 
strengths in the burnt gas referred to a system of absolute axes in which the 
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FIGURE 2. Detonation wave : propagation speeds. 

unburnt gas is at rest. Contours of temperature have not been shown. These are 
easily obtained from T,/To = (pe/po)/(pz/po). Clearly even if we suppose that the 
unburnt gas is cold the temperature in the burnt gas attains a value T > 104 degK 
which shows that effects of ionization may be significant. 

3. A model deflagration 
The one-dimensional model of a deflagration which we shall consider is that 

of a shock wave followed by a combustion wave at  which exothermal energy is 
released. The gas at  rest upstream of the shock wave is supposed non-conducting 
electrically but is fully ionized by the passage of the shock wave. In  the upstream 
region electric and magnetic fields may exist with mutually orthogonal com- 
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ponents parallel to the wave fronts. Figure 4 shows a schematic diagram of the 
model. Suffices 0,  1 , 2  refer to the various regions ahead of, between and behind 
the wave, respectively, T i +  is the gas velocity, Eg, H,* are the magnitudes of the 
upstream electric and magnetic fieldsin the directions of they, x-axes, respectively, 
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FIGURE 3. Detonation wave: pressure, density and electric field. 
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FIGURE 4. Model deflagration. 
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and V*, W* are the velocities of the gas-ionizing shock wave and magnetogas- 
dynamic combustion wave, respectively, all quantities being measured in a 
system of axes in which the upstream gas is at rest. 

The general analysis of this model is similar t o  that of the previous section. 
It has been carried through in an earlier paper by Helliwell (1963) in which the 
various conservation relations across the two waves were laid down and the 
Hugoniot curves in the ( p ,  .r)-plane established. In  this paper the jump relations 
across the shock wave were presented as equations (4), (5) and across the com- 
bustion wave they were given by equations (23). For ease of reference these 
equations, with minor rearrangement are repeated here. They are as follows: 

for the gas-ionizing shock wave 

m = q / r l  = Uo/7,, 

.mul +pl + QpHf  = mu, +po + &pH& 

(12a)  

(13b) 

,)n( &Uf + p , ~ ~  + g1) -El Hl = m(gUi + p O ~ O  + 8,) - E, H,, 
- , uU~H~ = El = E,, 

(12c) 

(13d) 
together with 

U: = 1'" - r!, E': = Er+/~l '*Hr,  H: = H,., p: = pr ,  p: = pr ,  
for r = 0,1; (13 )  

( 1 4 4  

(14b) 

,)a( &U$ + p ,  T~ + 8 2 )  - E, H2 = m( QU; +pl 71 + 8,) - El Hl + m&, ( 1 4 4  

(144 

for the magnetogasdynamic combustion wave 

'?n = ri,/7, = ul/rl, 
rnli, +p,  + i p H $  = mti, + p l  + QpHf,  

-,ui!kH, = E, = El = -,dGHl, 
together with 

rJ:= W*-t:s, E.:=E,+/LW*H,, H.$=H,, P Z = ~ , ~ ,  p.T=ps, 
for s = 1,3. (15) 

In  these equations all quantities without asterisk refer to axes moving with the 
shock or combustion wave respectively. (The definitions of tJ& El are thus 
different for the two waves; there should however be no confusion.) The per- 
meability is supposed constant throughout. The absorption of ionization energy 
at  the shock wave is supposed negligible and the exothermal energy released at  
the combustion front is written Q per unit mass. In the case of a high degree of 
ionization the absorption of ionization energy a t  the shock wave is unlikely to be 
negligible compared with the exothermal energy released at  the combustion 
front. However, in this paper, the jump of conductivity from (T = 0 to CT = co 
across the shock wave should be regarded as a scale effect rather than a con- 
sequence of full ionization of the gas, in which case the neglect of the absorption 
of ionization energy is not unreasonable. Its insertion would introduce an 
additional parameter into an already complicated, yet highly idealized, model 
for which any numerical results should in any case be regarded as qualitative 
rather than quantitative. The electric field, E, and magnetic field, H, do not 
rotate from their original directions in the upstream gas. 
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Magnetogasdynamic dejlagration in a perfect gas 

In  the present study, for simplicity of algebraic manipulation and succeeding 
computation, we restrict consideration to the case when the upstream electric 
field is absent. Then, as remarked in the previous section, the equations and 
analysis become formally identical to the case of a model deflagration of the 
above type which propagates into a gas aIready perfectly conducting. Thus in 
equations (13) we set EZ = 0. Further, it is supposed that the static gas into 
which the deflagration propagates is perfect with constant ratio of specific 
heats, yo, and that the gas remains perfect throughout the entire field but that 
the effect of the ionization and combustion is to change the value of yo to yl ,  y2  
in the appropriate regions. The internal energy of the gas in the various regions 
is given by 6 ,  = p,r,/(y, - 1)  with r = 0 , 1 , 2  and in regions 1 , 2  the speed of sound, 
A,, is given by A: = yrp,rr for r = 1,2 .  The speed of sound in the upstream region 
0 is denoted by a,,, where a: = yoporo and is used as unit of measure for all 
velocities. Thus the dimensionless Alfvkn speed, u, upstream of the wavns is 
defined by 

The additional non-dimensional speeds v*, u+, a,, u2, uT, u: are introduced by 
the relationships 

T7* = zl*ao, w* = I ~ * Q , , ,  A1 = alao, A ,  = agao, r< = urn,, 7F = ufgo, (17 )  

for r = 0, 1,3. After a little algebra the jump relationships across the two waves 
may thus be described in the following forms. 

9 = / dqrO/a ; .  (16) 

For the gas-ionizing shock wave: 

(18d)  
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The electric fields are given by 

and the pressure ratio is 

For a given upstream state of the unburnt, non-ionized gas, equations (18) 
are a set of six equations for the seven variables v*, uf, p l ,  rl, a,, HT, ET which 
define the conditions between the shock and combustion wave, and for a known 
rate of exothermal energy release, &/a;, equations (19) are a similar set of six 
equations for the seven variables ui*, ug, p2, r2,  a2, H t ,  E; in the products of 
combustion. The solution of the problem thus has two degrees of freedom; if 
any two of the quoted variables are specified the problem has a unique solution. 
For instance, for given speeds of the combustion and shock waves the flow 
parameters and electromagnetic field are completely determined. In  the sub- 
sequent development we shall suppose that an alternative pair of conditions are 
specified, viz. the speed v* of the gas-ionizing shock wave and the speed u; in 
the burnt gas. In  the final calculations we shall set uX = 0 corresponding to 
deflagration in a closed tube, but meantime as a more general investigation we 
retain ug in the analysis. However, to avoid undue algebraic complication in 
what follows it is supposed that the adiabatic index is constant through the 
entire flow. Thus the suffix is removed on yr for all r ,  and we write 

Yo = 71 = 7 2  = 7 .  

Consider first the gas-ionizing shock wave described by equations (18) in 
which it is supposed that v* is specified. Then, by simple elimination, it can be 
shown that the particle velocity uT is given by the solution of the quadratic 
equation 

provided that uT + 0. For general v*, the roots of this equation are 

( y  + 1) v*up-  { ( y  + 3) v*2- 2 - ya2)uT - 2v*{l- v*2- a2' 1 -  - 0. 

2(y + 1)  v*uT = [ ( y  + 3) v*2- 2 - ya2] 

* { [ ( y  + 3) v*2- 2 -ya2]2- 8(y+ 1)  v*2(v*2- 1 -a2))k (20) 

which may be written in the form 

2(y  + 1) v*u: = [ (y  + 3) v*2- 2 - ya2] 

& { [ ( y  - 1)  v*2+ 2 +ya2]2- 4a2v*2(y - 2) ( y  + 1))k 

Thus for values of y < 2 the positive sign yields uT >, v* according as a2 > 0, 
that is, the velocity of the gas behind the shock wave is greater than or equal to 
the velocity of the wave itself, which is clearly impossible. Furthermore, if the 
negative sign is taken, the corresponding value of uT < v* for all a2. Finally, 
since for a real wave u: > 0 the velocity of the shock wave has a lower bound given 
by v* > ( 1  + a2)*. In  the case v* = (1 + a2)& the shock wave degenerates into an 
acoustic wave with the gas particles at rest behind it. Once the value of u? has 
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been determined from equation (20), taking the negative sign, the associated 
density and magnetic field behind the shock wave are found from equation (18a). 
The electric field is then obtained from equation (18d). The elimination of ( 7 4 ~ ~ )  
from equations (1 8 a,, b) leads to the expression 

(21) 

for the speed of sound behind the shock, from which, by use of equation (18e) 
the pressure is evaluated. 

In  a similar manner we may examine the magnetogasdynamic combustion 
wave the properties of which are stated as equations (19), where all variables 
bearing suffix 1 are supposed known from the above solution for the shock wave, 
and the downstream particle velocity, uf, is specified. In  this case the algebra 
is similar to the above but more formidable. The elimination of ( T ~ / T ~ )  and a2 
from equations (19 a, b, c) leads to the following cubic equation for the speed, 
to*, of the combustion wave, 

' I  2 
[ul*+--2-u;-- 7 - 2  u$ = 0. ( 2 2 )  

- a"l(u,* - u;) - c12 

Now when a2 = 0,  the equation degenerates into the gasdynamic case and one 
root is w* = ug; of the others one is negative and the remaining positive root 
corresponds to the combustion velocity. Further, if uf > 0, this cubic equation 
has two positive and one negative root, since for a real combustion wave uT > ug 
and y < 2. Therefore since the solution is a continuously varying function of a2 
we deduce that the speed, u+, of the combustion wave, ug < w* < u?, is given 
by the largest positive root of equation ( 2 2 ) .  In  the region of burnt gas the 
density and magnetic field are then given by equations (19 a )  and the electric 
field is obtained from equation (19d). The speed of sound, a.2, is then derived 
from equation (196) and finally the pressure from equation (19 e). 

In  conclusion, it is of interest to calculate the speed of propagation of small 
disturbances, Cl, C,, in the region between the waves and behind the combustion 
wave, respectively. These are given by 

C,z = d,z+pH,27, ( r  = 1,s). 
Thus in non-dimensional form, writing Ci = erao, we have 

c2 - - a 1 + a 2 ( ~ 0 / ~ 1 ) ,  2 ci = a i+a2(70 /~2) .  (23) 

The importance of these quantities lies in the fact seen earlier that when the 
velocity of the combustion front relative to the products of combustion has the 
value C2 detonation may occur under Chapmaii-Jouguet conditions. Thus, by 
analogy with the concepts of ordinary gasdynamic detonation theory, deflagra- 
tion may be only expected to occur when w* - uf < c2, and the mathematically 
feasible 'strong deflagration' solutions of the above when w* - u$ > c2 are 
believed to have no physical reality. 
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Magnetogasdynamic de$agrution in  a closed tube 

In  a previous paper Adams & Pack (1959) investigated the deflagration of a 
gas in a closed tube in a purely gasdynamic context. As an illustration of the 
theory developed in this paper a detailed numerical examination is now made of 
deflagration in a closed tube in the presence of a magnetic field with ionization 
across the shock wave. The results of Adams & Pack are included as a special 
case. In  view of the remarks at  the end of the preceding paragraph, for sufficiently 
low speeds of deflagration, the model illustrated in figure 4 and subsequently 
analysed is adequate for this purpose if in it we set 17; = 0. Since the products 
of combustion are at rest in the absolute system of axes, Eg = 0. Explicit 
analytical solution of the appropriate equations is not possible and recourse 
must be had to a graphical presentation. The evaluation of the numerous details 
was carried out on a digital computer for the range of values of a2 and Q/a i  listed 
in S 2 .  The results are shown in the sequence of figures 5 to 12. 

Consider first the change of state across the gas-ionizing shock wave. This is 
illustrated by figures 5, 6 for different strengths of the upstream magnetic field, 
HZ, which we recall is proportional to a. As has already been noted, the minimum 
speed of the shock wave is given by t i *  = (1 + a2)* and then the shock is of zero 
strength. With increasing Hi, 

(i) both the strength ( p ,  -p,)/p, and the condensation (p,-po)/po increase 
more slowly with increasing shock velocity; 

(ii) the temperature ratio, T,/T, = (p,/po)/(p,/po) rises more quickly with 
increasing shock velocity. 

With fixed H,* 
(i) the magnitude of thc electric field behind the shock is very approximately 

proportional to the excess shock speed over the minimum; 
(ii) for increasing values of the shock speed the particle speed behind the 

shock as in ordinary gasdynamics, is at  first ‘ subsonic ’ but for a sufficiently large 
shock speed becomes ‘ supersonic ’ (the term ‘sonic ’ refers to the speed of pro- 
pagation of small disturbances in the gas behind the shock, which in the presence 
of a magnetic field is greater than the speed of sound); with increasing HZ the 
transition takes place at  increasingly greater values of the shock speed; if HZ is 
large the particle speed is ‘subsonic ’ except possibly for exceedingly fast shocks. 

Now consider the overall deflagration. The details of the combustion wave 
are given in figures 7 to 12. These should be studied in conjunction with figure 3 
which shows the properties of a steady detonation. The speed of the combustion 
wave is always less than that of the preceding shock wave even when the former 
is moving faster than the speed of the corresponding detonation wave. Thus the 
feature of ordinary gasdynamic deflagration first noted by Adams & Pack (1959) 
that attainment of the Chapman-Jouguet velocity by the combustion wave does 
not lead to detonation is unchanged by magnetogasdynamic effects. The ranges 
of 04: when w* > c2 are not discussed-they correspond to ‘strong deflagrations’ 
which as remarked earlier are believed to have no physical import. Almost all 
other features of ordinary gasdynamic deflagration pass unchanged to the 
magnetogasdynamic case. The specd of the combustion wave increases more 
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rapidly with increase of shock speed as HZ increases. As the exothermal energy 
release, Q/a& increases so does the range of possible wave speeds. In the products 
of combustion the ‘sonic’ speed is sensibly independent of the wave speeds. It 
increases with increase of€€,* as is to be expected since i t  contains a contribution 
from the A1fvi.n speed. The magnitude of the increase is approximately in- 
dependent of @/a$ 

From figures I 0, 11,  12 it can be seen that with large upstream magnetic fields 
the density and magnetic field in the products of combustion rapidly approach 
their asymptotic values as the shock speed increases, though more slowly with 
increase of exothermal energy release. The sole difference from an ordinary 
gasdynamic deflagration occurs in the pressure of the burnt gas. Whilst the 
pressure ratio p,/po is always greater than that in the ordinary gasdynamic 
case at shock speeds correspondingly greater than the minimum, for sufficiently 
large magnetic fields this ratio falls with increase of shock velocity (provided 
the exothermal energy is not too large) as a consequence of the interaction of 
the electromagnetic energy and stress with their mechanical counterparts. 

The author is indebted to J. G. Fraser and F. J. Warner for assistance with 
the computations. 
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